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Damped vibration of a string 

By S.P.LIN 
Clarkson College of Technology, Potsdam, New York 13676 

(Received 25 April 1973 and in revised form 17 October 1975) 

The bounded solution of the unsteady Stokes equations is obtained for the flow 
of a viscous incompressible fluid about a circular cylinder which undergoes a 
linear translation starting from rest. A drag formula which consists of the known 
added-mass term and an additional term arising from the presence of viscosity 
is obtained. The drag obtained is applied locally in a study of damped vibration 
of a string. It is shown that the usual theory based on the quasi-steady drag 
formula overestimates considerably the period and the decay rate of damped 
vibration of a string in a viscous fluid. 

1. Introduction 
A good knowledge of unsteady Stokes flows is useful for understanding some 

important aspects of suspension rheology, micro-organism propulsion and hot- 
wire instrumentation. 

The unsteady flow obtained by Basset (1888) for a sphere translating in a 
viscous fluid is well known. This solution of the unsteady Stokes equations is 
uniformly valid in time and reduces to the known steady solution of Stokes if 
the translational velocity of the sphere attains a constant value. Ockendon (1968) 
considered the solution of the Navier-Stokes equations for the flow produced by 
a sphere which starts from rest and eventually reaches a constant velocity. He 
expressed the solution as an asymptotic expansion in terms of the (small) 
Reynolds number and showed that the expansion becomes invalid for large times 
unless the time scale on which the sphere’s velocity varies is sufficiently large. 

Batchelor (1954) and Hasimoto (1956) obtained a bounded solution uniformly 
valid in time of the unsteady Stokes equations in their studies of the flow that is 
generated by forced motion of an infinite cylinder parallel to its length in a viscous 
incompressible fluid. On the other hand it is well known that the solution of the 
Stokes equations for a circular cylinder steadily translating in a direction normal 
to its axis does not satisfy the boundary condition at infinity. Proudman & 
Pearson (1957) and Kaplun (1957) have shown that this Stokes solution can be 
matched to the small Reynolds number asymptotic solution of the Navier- 
Stokes equations that is valid in a region far away from the cylinder where the 
convective acceleration is as important as the viscous diffusion. However the 
transient flow which approaches the above steady solution has not yet been 
given. 

It is known that the unsteady Stokes equations describe high frequency, small 
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amplitude oscillatory flows a t  all Reynolds numbers as well as the initial develop- 
ment of the flow of a viscous fluid accelerated rapidly from rest. (See Batchelor 
1967, pp. 216, 353; Landau & Lifshitz 1959; Stuart 1963.) Despite their wide 
application, only a few solutions of the unsteady Stokes equations are known for 
flows which start from rest. A bounded solution of the unsteady Stokes equations 
is given in the next section for the flow around a circular cylinder which undergoes 
a linear translatory oscillation. The oscillation is assumed to be along a straight 
line normal to the axis of the cylinder but is otherwise quite general. The corre- 
sponding transient drag on the cylinder is also given. The drag formula consists 
of two terms of equal magnitude. The first is the familiar added-mass term while 
the second arises from the action of viscosity. The results are applied in $ 3  to 
calculate the transient viscous damping of a string which is displaced to a given 
initial position before being released from rest. 

2. Unsteady Stokes flow 
Consider the flow of a viscous incompressible fluid around a body. The motion 

of the body is described by the velocity vector u(t) = - i u ( t ) ,  where t denotes 
time and i is a unit vector. The governing equations of the flow relative to a 
reference frame attached to the cylinder are V . V = 0 and 

avlat + (V. V )  V = -p-'Vp + v(V.  V )  V + iduldt,  (1)  

where V is the velocity, p the dynamic pressure, p the density, Y the kinematic 
viscosity and V is the gradient operator (see Batchelor 1967, p. 140). The above 
nonlinear equation can be linearized near the body in two important limiting 
cases of oscillatory motion in a viscous fluid (cf. Landau & Lifshitz 1959, p. 88; 
Batchelor 1967, pp. 216, 353). The first limiting case is that of a low frequency 
oscillation such that na2/v < 1 and naS/v < 1, where n, a and 6 are respectively 
the characteristic frequency, a representative dimension of the body and the 
amplitude of the oscillation. For this case the flow is quasi-steady and is governed 
by the steady Stokes equations. The second limiting case is that of a small ampli- 
tude oscillation such that 6 a but naZ/v is not necessarily smaller than one. 
For this case the flow is governed by the unsteady Stokes equations even if the 
Reynolds number naS/v is greater than one. Note that the subcase of the second 
case when na2/v < 1 is also covered by the first limiting case. The unsteady Stokes 
equations also describe the initial development of flows due to rapid acceleration 
of a body initially at rest (see Stuart 1963; Lin 1976) if S < a. For these flows the 
governing equations are 

( a / a r - v , . v , ) v , x v ,  = 0, v,.v, = 0, ( 2 %  b )  

where the time, the gradient operator and the velocity have been respectively 
normalized according to 7(u2/v)  = t ,  V, = aV and V ,  U = V ,  U being the maxi- 
mum velocity of the cylinder. The corresponding boundary conditions are that 
the fluid should stick to the surface of the body and that the velocity V, should 
tend to iu/U at infinity. The fluid is supposed to be initially motionless. 

Consider the special case of two-dimensional flow around a circular cylinder 
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of radius a. For this case, it is convenient to use the polar co-ordinates ( r , 8 ) ,  
where r is the radial distance measured from the axis of the cylinder and 8 is the 
angle measured counterclockwise from i. Equation (2b)  enables one to define a 
stream function $ in terms of which the r and 0 components of the velocity vector 
can be written respectively as 

v,, = - r-1 a$/ae, v,, = a$/ar. 

The vorticity has only one component, in the z direction, normal to the r ,  6 plane, 
and is given by 

Cl = V, x V, = iaV2$, 

where V2 is the Laplacian defined by 

the i’s are unit vectors and the subscripts denote directions. Substitution of the 
above expressions for the vorticity and the Laplacian operator into (2a) yields 
the diffusion equation for the vorticity: 

( a p  - v2) v2g = 0. 

$(r, 8, 0) = 0. 

a@/aO = a$/ar = 0 a t  r = 1, 

(3) 

The initial condition for this equation is 

The boundary conditions are 

- r-l a$/a8 = [w(7)  + f ( r ,  7)] cos 19, a$-/ar = [ - V ( T )  + g(r, T ) ]  sin 8 as r + co, 

where ~ ( 7 )  = u /U,  andf(r, 7) and g(r ,  T )  are as yet unknown functions which must 
remain smaller than order one if the boundary condition a t  infinity is to be 
satisfied to first order. The solution of (3) with the above conditions has been 
obtained already by Lin (1976) in his study of the initial drag on a cylinder and 
will be only briefly mentioned here. 

The solution of (3) that satisfies the boundary condition a@/a8 = 0 at  r = 1 
can be written as 

The first term in the right-hand side of this equation corresponds to the irrota- 
tional part of the soIution and the term involving the integral arises from the 
action of viscosity. Transformations similar to (4) have been used by Lin & 
Gautesen (1972) for the creeping flow around a deforming sphere. Substitution 
of the above form of the solution into (3) and its initial and boundary conditions 
shows that X(r, 7 )  must satisfy the diffusion equation 
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subject to the conditions 

x(r,O) = 0, x ( 1 , ~ )  = 2w(7), limX(r,T) = o(1). 

The solution for x(r, T )  may easily be obtained by the method of Laplace trans- 
forms and is given by 

r-m 

and the dot denotes time differentiation. This function also describes the tran- 
sient temperature field caused by heat conduction when a circular cylinder in an 
unbounded medium with zero initial temperature is subjected to a unit step 
temperature increase (cf. Carslaw & Jaeger 1959, pp. 335-336). In  the above 
expression Jo and Yo stand for the zeroth-order Bessel functions of the fist and 
second kinds respectively. 

By using (4), the functions f and g can be expressed in terms of x as 

g = f+ limx(r, 7) .  
T-XO 

It was mentioned earlier that, as long asfand g remain o( 1), the solution (4) can 
be regarded as uniformly valid in space. We expect the condition f , g  = o(1) to 
be satisfied in unsteady oscillatory Stokes flows. The general results (4) and (5) 
are applied to the problem of forced transient oscillation of a cylinder in the 
appendix. In  this particular example both g and f vanish as r -+ 00. 

The drag force D per unit length for a cylinder translating at the velocity 
- h ( 7 )  can be calculated from 

where the integration is along r = 1 and where C T ~  and o;, are the normal and 
tangential stress components, related to the velocity field by 

where p1 is the pressure normalized by pvU/a and the subscripts on the right- 
hand sides of the above equations denote partial differentiations. From the I9 
component of the Stokes equations, one has 

p1 = [qhW7 - .2r-2$0 + 2r-l$,, - $ow - qhOrm + rzj] cos 8. 
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Thus, in terms of the stream function the drag is given by 

where 

The first term on the right-hand side of (6), i.e. n6, is the well-known added-mass 
term (cf. Milne-Thomson 1960, p. 237) and the second term is the additional drag 
due to viscosity. It is clear from the expression for x,.( 1 , ~ )  in (6) that if 6 does not 
change sign after the start then xr( 1,7) and 6 are always of opposite sign. Hence, 
according to (B), the drag on a cylinder which accelerates or decelerates mono- 
tonically from rest in a viscous fluid is always larger by an amount 12nxr( 1 , ~ )  I 
than that which the same cylinder would experience in an inviscid fluid. However, 
it  must be pointed out that, i f6  is monotonic, then the use of the unsteady Stokes 
equations is justified only during the initial period when the distance travelled 
by the cylinder is much smaller than its diameter (see Lin 1976). 

3. Damped vibration of a string 
The forces on a cylinder and also on a sphere executing an undamped oscilla- 

tion were obtained by Stokes (1851). The correction to the force on a sphere due 
to the damping was given by Meyer (1871) and Hussey &, Vujacic (1967). The 
latter authors also gave the correction for a cylinder. However, these corrections 
were based on a prescribed exponential decay of the amplitude. 

In  practice, the fluid motion is set up from rest, and for some time after the 
initiation of the motion, the velocity field contains ‘transients’ determined by 
the initial conditions as is demonstrated in the last section. After this initial 
stage of flow development, it  is usually assumed that the flow becomes quasi- 
steady and the damping force on the body becomes in phase with its oscillatory 
velocity. Then the rate of the decay of the oscillation due to viscosity can be 
obtained from consideration of the energy dissipation in the locally two-dimen- 
sional quasi-steady boundary layer over the body surface, if the Reynolds num- 
ber of the flow is so large that boundary-layer theory is applicable (Batchelor 
1967, pp. 355-358). Here we are interested in small amplitude oscillation includ- 
ing the initial stage of unsteady viscous damping for which the boundary-layer 
approximation may not be applicable. The numerical example given below shows 
that the quasi-steady theory overestimates considerably both the period and the 
decay rate of damped vibration of a string. 

Consider a string of radius a stretched along the x axis between x = 0 and 
x = la under a tension of magnitude AS’. Small amplitude vibration of such a string 
is governed by (cf. Rayleigh 1945, p. 177) 

nazp, &(X, t )  = flyz2(x, 4 + w, t ) ,  (7) 
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where ps is the (volume) density of the string, y(x, t )  the transverse displacement 
of the string at the station x at time t ,  D the drag per unit length of the string 
and the subscripts denote differentiations. The drag force given in the last sec- 
tion for an infinitely long circular cylinder is applied locally to the present prob- 
lem of viscous damping of a string. Thus we put 

D = ? ~ P v U [ V ( X , ~ ) , - ~ X ~ ( ~ , X , ~ ) ] .  

This approximation is expected to be valid if the amplitude is much smaller than 
the wavelength for all Fourier components required to describe the vibration of 
the string. 

Using the dimensionless variables x = l ax ,  y = a2 and t = T/Q,  where Q is a 
characteristic frequency of the vibration, we write (7) as 

in which 
N P  + P J  

Suppose that the string is fixed at both ends and is displaced to a given initial 
position before being released from rest a t  T = 0. The initial condition for each 
Fourier component of the vibration is then 

Z ( X ,  0) = hNsin ( N ' T I . ~ ) ,  Z T ( X ,  0) = 0, (9) 

where h,a is the initial amplitude and N is a positive integer. 
Recall that the drag force employed to arrive a t  (8) was obtained through the 

linearization of the Navier-Stokes equations for small amplitude oscillatory 
flows. Therefore (8) is applicable only if hN < 1 but na2/v need not be smaller than 
one. If na2/v is also smaller than one, then the flow is quasi-steady and ( 7 )  can 
be reduced to equation (12) below. Moreover, for the local substitution of (6) in 
(7)  to be reasonable, we must have la/N > a for all N necessary to describe the 
motion adequately. Thus, for the vibration of a string the description of whose 
shape at  any time requires more than the first I terms in the Fourier series, (8) 
is not applicable. 

The solution of ( 8 )  under the above conditions can be written as 

2 = hNzN(T) sin ( N n X ) ,  

where zN( T) must satisfy the integro-differential equation 

and the initial conditions 
ZN(0) = 1, i ( 0 )  = 0. 

The solution of (10) with (1 1) is obtained by the following iterative method. First 
the integral in (10) is neglected and the resulting differential equation with (1 1)  
is integrated by use of the fourth-order Runge-Kutta method. The ZN(h) thus 
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obtained is then substituted into the right-hand side of (10) for evaluation of the 
integral. The resulting inhomogeneous differential equation is then solved by 
the Runge-Kutta method. The same procedure is repeated until both sides of 
( 1  1)  evaluated by successive iterations agree to within a given small error E. 
This given E is then reduced by one order of magnitude and the whole computa- 
tion repeated until values of x,(T) obtained for the two successive values of E 
agree with each other up to a given number of decimal places. The convergence 
of the iterative solution of a class of integro-differential equations is discussed by 
Phillips (1970). 

For the actual numerical computation, we considered the vibration in glycerine 
of a steel wire of radius 0.1 em and length IOcm stretched between two fixed 
points at S = 9.8 x lo6 dynes. The initial displacement was given by (1 1) with 
hNa = 0.01 em. Thus ps = 7.9glcm3, p = 1-25g/cm3, v = 6.&cm2/s, I = 100, 
S2 = 583.91s and e = 0.2579. Numerical results were obtained only for the initial 
conditions corresponding to N = 1 and 3. The values of xN(T) at various key 
points for the case N = 3 are given up to T = 3-206 in tables 1 and 2. All computa- 
tions were carried out using an IBM 360. The time interval used in the Runge- 
Kutta method was The trapezoidal rule was used to evaluate the integral 
in (10). The values of z,(T) for N = 3 obtained with E = lo-* and agree 
up to the third decimal place. The computer time required for the case of N = 1 
was slightly over 1 h but almost 2 h was needed for the case of N = 3. For higher 
Fourier components, the time step size required for numerical convergence 
decreases as N 2  for a given accuracy and the computer time required increases 
rapidly. Moreover, the maximum attainable T decreases because of the increase 
in the storage space required, for a given T, in the IBM 360, whose storage space 
is limited. In  principle, however, the solution for given initial conditions can be 
obtained by superposition of sufficiently large numbers of Fourier components. 
For the purpose of assessing the significance of the transient effect, it  suffices to 
consider only one Fourier component. The transient effect is assessed by compar- 
ing the present results with the results from potential theory and the theory 
based on the quasi-steady drag. 

If the fluid is frictionless, then E = 0 and the right-hand side of (8) vanishes. 
The corresponding solution of (8) with the condition (9) is 

Z(T, X )  = h, cos (NnT) sin (NmX)  = hNYN(T) sin (NmX). 

Thus the string oscillates with a constant frequency Nm without damping. The 
normalized displacements Y,(T) obtained from the above equation for the same 
numerical example are given in the third column of table 1. 

On the other hand, if the usual quasi-steady viscous drag D ,  = 4na2pvQZ, 
(see Batchelor 1967, p. 357) and the added-mass drag D, = na2paQ2ZTT for a 
circular cylinder are used locally, then instead of (10) we have 

where 
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T 
0~000 
0.026 
0.086 
0.126 
0.156 
0.166 
0.176 
0.206 
0.266 
0.316 
0,326 
0.336 
0.386 
0-446 
0.476 
0.486 
0.496 
0.506 
0.546 
0.626 
0.636 
0.666 

%(T)  Y 3 P )  

1*0000 1-0000 
0.9698 0.9701 
0.6914 0.6891 
0.3681 0.3740 
0-0888 0-1004 

- 0.0063 0.0063 
- 0.1007 - 0.0879 
- 0.3707 - 0.3622 
- 0.7762 - 0.8053 
- 0.9014 - 0.9867 
- 0.8997 - 0.9976 
- 0.8892 -0.9997 
- 0.7124 - 0.8793 
- 0'2940 - 0.4872 
- 0.0451 - 0.2243 

0.0383 - 0.1316 
0.1204 - 0.0377 
0.2006 0.0565 
0.4859 0.4209 
0.7678 0-9275 
0.7693 0.9585 
0.7276 1~0000 

TABLE 1. Displacements of a vibrating string 

Y 3 W )  

1-0000 
0.9559 
0.6571 
0.3498 
0.0946 
0.0083 

- 0.0767 
-0.3190 
- 0-6893 
- 0.8228 
- 0.8726 
- 0.8250 
- 0.7077 
- 0'3828 
-0.1769 
-0.1060 
- 0.0349 

0.0358 
0.3011 
0.6454 
0.6640 
0.6831 

T 

0.786 
0.796 
0.826 
0.836 
0.946 
0.996 
1.076 
1-116 
1.126 
1-166 
1.176 
1-256 
1-336 
1.426 
1-436 
1.496 
1.506 
1.586 
1.666 
1.736 
1.746 
1.836 
1.856 

z 3 P )  YdT) T Z 3 P )  

0-0531 0.2831 1.896 0.4409 
- 0.0193 0.2268 1.996 0.2389 
- 0.2288 0.0520 2.046 0.0406 
- 0.2939 - 0.0066 2.056 - 0*0010 
- 0.6759 - 0.5036 2.166 - 0.3523 
- 0.5946 - 0.5649 2-176 - 0,3666 
- 0.2583 - 0.4142 2.186 - 0.3868 
- 0.0093 - 0.2518 2-336 - 0.6458 

0,0533 - 0.2509 2.366 - 0.0128 
0.2866 - 0.0136 2.376 0.0232 
0.3378 0.0345 2-496 0.3231 
0.5824 0-3840 2.506 0,3300 
0.4582 0.4657 2.516 0.3336 
0.0202 0.2924 2.666 0.0493 

- 0.0345 0-2585 2-686 - 0.0136 
- 0.3274 0.0270 2.836 - 0,2933 
- 0.3660 - 0.0129 2.846 - 0.2913 
- 0.5108 - 0.2848 2.986 - 0.0260 
- 0.3452 - 0.3854 2.996 0.0014 
- 0.0361 - 0.3008 3.136 0.2536 

0.0116 - 0.2776 3-166 0.2492 
0.3633 - 0.0024 3.176 0.2432 
0.4065 0.0624 3-206 0.1964 

TABLE 2. Damping of a vibrating string 

YdT) 
0.1789 
0.3186 
0.2860 
0-2719 
0.0127 

- 0.0145 
- 0.0412 
- 0.2628 
- 0.2493 
- 0.2404 
- 0.0194 

0.0031 
0.0254 
0.2174 
0.2 132 
0.0048 

- 0.0137 
- 0.1782 
-0.1795 
- 0.0506 
- 0*0100 

0.0053 
0.0495 
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FIUURE 1. Damped vibration of a string. - , present theory; 
_ _ _ - _  , quasi-steady theory. 

n being the actual frequency of the oscillation. The solution of (12) with the 
initial condition (9) is given by 

Z(T, X) = h,e-pT cos (nT/Q) sin ( N r X )  (13) 
= h,y,(T) sin ( N r X ) ,  

in which 

Thus the quasi-steady theory gives an exponential decay of the amplitude at a 
constant dimensionless frequency. For the numerical example considered, 

= 0.5720 and nl(277i2) = 1.4973, which is smaller than the frequency 3 predicted 
by the potential theory only by 1-8 % . The numerical values of the normalized 
displacements y,(T) obtained from (13) are given in tables 1 and 2 and plotted in 
figure 1. The corresponding displacements zJT)  predicted by the present theory 
are also plotted in the same figure. 

It may be seen from figure 1 that the quasi-steady theory overestimates 
considerably both the period and the damping rate of the oscillation. The periods 
predicted by the present theory for the first five cycles are 0.64, 0.62, 0.64, 0.62 
and 0.62, which are approximately 7 % shorter than the constant period 0-6698 
predicted by the quasi-steady theory. The dimensional frequency corresponding 
to a dimensionless period of 0.62 is n = 0.62 (2r/Q) = 5823.64/s. Thus the present 
numerical example, with na2/v = 8.56 and h,  = 0.1, belongs to the second limit- 
ing case mentioned in the last section. The amplitude of the vibration varies 
during the first five cycles with consecutive amplitude ratios 0.7693, 0.7574, 
0.7570, 0.7566 and 0.7584. It is reasonable to expect that the amplitude ratio 
will increase slightly as T increases and reach an asymptotic value. However 
it is very unlikely that this asymptotic value will approach the considerably 
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smallerratio exp ( - 0.5720[1.493) = 0.6825 predicted by the quasi-steady theory. 
Figure 1 should not be interpreted as showing good agreement between the quasi- 
steady theory and the present theory during the first quarter-cycle. In fact 
table 1 shows that the results predicted by potential theory agree more closely 
with the present results during the initial stage of vibration as expected. 

This work was supported by a National Science Foundation Grant. The 
writer is grateful to Mr C. S. Wang for his assistance with the numerical com- 
putation. 

Appendix. Forced oscillation of a circular cylinder 
Consider the flow around a circular cylinder which, after starting suddenly 

from rest, performs simple harmonic oscillations with a finite frequency w and 
an amplitude 7t. For this case, V ( T )  = h s i n u ~ H ( ~ ) ,  where H(T)  is the Heaviside 
unit step function, and the solution for x is (of. Carslaw & Jaeger 1959, p. 339) 

where C.C. stands for ‘complex conjugate’, d = w* and KO is a modified Bessel 
function of zeroth order. Thus the transient flow considered is completely de- 
scribed by (4) with x given by the above expression. As 7 -+ 03, the integral 
appearing in the above equation vanishes and we have from (4) 

where M = w’exp(4ir). By use of the relations (Abramowitz & Segun 1968, 
equations (1 1.3.27) and (9.6.26)) 

and K,(M) -K,(M) = ZM-lK,(M), 

we can reduce the above solution for $ to 

which is the known stream function for quasi-steady oscillatory Aow around a 
cylinder (Stokes 1851; see Stuart 1963, p. 391; Holtsmark et ul. 1954). Moreover, 
it can be shown that f N r-8 and g - r-4 as r + 00 for any T 1 0. 
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